
 A Digital Signal Processing (DSP) Architecture for Adaptive
 Differential Pulse Code Modulation
 (ADPCM) Transcoders

J. G. Bartkowiak, M. Nix, S. M. Asghar
Communications Products Division, Advanced Micro Devices,

Email. john.bartkowiak@amd.com

1. Abstract. In this paper, the authors
present a DSP architecture tailored to
execute all of the functions necessary to
convert 12 or 13 bit uniform PCM to 4 bit
ADPCM where bit-compliance to the ITU
G.726 32 Kbits/s standard [6] is a mandatory
requirement. Section 2 provides a general
overview of the product areas to which
ADPCM is applicable and places some early
product offerings in their historical context.
Section 3 lists the ADPCM transcoding
algorithm’s arithmetic functions that
comprise the standard: the authors
recommend that familiarization with
reference [6] above be made. Section 4
describes the DSP architecture and explains
design trade-off's used to address the
computational complexities of meeting the
compliance requirement. Section 5 concludes
with DSP system resource and performance
figures.

2. Introduction. Speech transcoders
employing Adaptive Differential Pulse Code
Modulation are used in office automation
applications such as voice store and forward
(Audix), ADPCM transmission over T1
networks and general voice data
compression. In addition, the requirement in
Europe for 2nd generation Cordless
Telephones (CT2) and the Digital European
Cordless Telephone (DECT) standard

impose mandatory compliance with ITU
Recommendation G.726 32 Kbits/s ADPCM.

 Furthermore, increasing penetration of 900
MHz digital cordless telephones into the
US and Far East residential markets has
challenged those competing in this area to
provide a fully integrated transcoding
solution to address the demand for high
quality audio at inexpensive prices.

 Early 1990’s product solutions for ADPCM
transcoders employed several Integrated
Circuits (IC’s) [1,2], were not G.726
compliant [2], employed more than 1 IC to
perform encode and decode [1], or used
power-hungry general-purpose Digital Signal
Processors (DSP’s) [3,4]. The DSP
architecture and ADPCM implementation
described in this paper performs both the
encode/decode (CODEC) portion of the
audio path compliant to ITU G.714 and the
ADPCM transcoding portion bit-for-bit
compliant with ITU Recommendation G.726
32 Kbits/s ADPCM. For completeness, the
authors mention that, in addition to the DSP
core, the design includes analog functions,
microcontroller, DRAM, channel control,
modem transmitter and man-machine
functions on a single integrated circuit.

Bartkowiak, Nix, and Asghar, AMD 1997

3. G.726 32 Kbits/s ADPCM. Simplified
block diagrams of both the ADPCM encoder
and decoder can be found in [6]. Although
G.726 is specified for conversion of a 64
Kbit/s A-law or u-law pulse code modulation
(PCM) channel to and from a 40, 32, 24 or
16 Kbits/s channel, the design employs
uniform 12 & 13 bit PCM. This is because
the conversion algorithm interfaces directly
with the output from a digital CODEC that
outputs uniform PCM and employs an
analog front-end with an over-sampled
Delta-Sigma Analog-to-Digital Converter
(ADC).

3.1 Transcoder Arithmetic Functions.
The required computations are described in
reference [6] as basic logical sequences given
as guidelines for implementation. The
discussion here is limited to emphasizing the
diversity of binary representations - signed
magnitude, two’s complement and floating
point formats of differing bit lengths - used
for the internal state variables and the types
of arithmetic operations employed by the
algorithm:

1. Arithmetic left and right shift.

2. Bit manipulation and logical

 functions with masking of varying

 bit-lengths and formats.

3. Fixed- and floating-point multiply,

 multiply-accumulate, add and

 subract of varying bit-lengths and

 formats.

4. Log and antilog functions.

5. Look-up-table and comparison

 functions.

6. Float-to-fixed point conversion.

Of these operations, those least able to be
performed efficiently on a standard 16-bit
DSP architecture include floating-point
operations, float-to-fix conversion and
log/antilog routines. Analysis of these
functions led the design team to conclude
that providing hardware support for these
functions would strike the best balance
between hardware and firmware
implementation. Indeed, the similarity of the
basic float and log functions suggested
shared hardware. This, allied with reduced
firmware load would limit clock rate and, in
consequence, power consumption.

4. ADPCM DSP Architecture. To ensure a
speedy turn-around on the project, the
design borrowed from an existing DSP core

used internally in an Subscriber Line Audio-
processing Circuit (SLAC) designed for
Central Office (CO) switches. However,
additional constraints to minimize silicon size
and accelerate the design cycle required that
the instruction and data memories be kept to
their existing sizes. This meant supporting
the additional hardware blocks without
increasing the instruction word size.

 The single most important factor allowing
such a scheme to succeed was the ADPCM
algorithm itself - the fact that the decoder is
an exact replica of the feedback portion of
the encoder allowed the same instruction

memory code to execute both the encoder
and the decoder functions with the support
of a paged memory to partition the state
variables for the two signal paths.

4.1 The Data Path. Figure 1 shows the
block diagram of the DSP architecture. A
ROM-based Sequencer controls the
execution units by stepping repeatedly

Bartkowiak, Nix, and Asghar, AMD 1997

through the same sequence of instructions.
The main 19-bit data path of the DSP
comprises a buffered dual-bus RAM
connected to an adder. The B-bus input of
the adder passes through a “right-shift & bit-
mask” block, whence the output feeds an
accumulator and two registers, “Temporary

& Extra buffer”. Digital audio data from the
CODEC portion of the system interfaces to
the data path via serial-to-parallel and
parallel-to-serial registers shown as

“Decimator & DAC” in Figure 1.

 Audio data are sampled at 8 KHz and, with
a DSP instruction clock of 9.216 MHz, up to
1152 instructions can be executed every 125
us. During each cycle of the 2-phase clock,
the DSP can perform a RAM access, a right-
shift or bit-mask, an arithmetic operation,
overflow control & a register load. Two
additional blocks shown in Figure 1 as
“Multiplier” & “Limit and Quantization”
perform the special functions required to
support G.726 ADPCM and can operate in
parallel with the adder block.

 A coefficient memory comprising both
ROM and RAM feeds the both the A- & B-
busses. An additional “Test Register” for
general-purpose use and for support of Built-
in-Test (BIT) is available plus 2 4-bit
registers for transmission and reception of
the ADPCM codes. Finally, PCM support
hardware for compliance testing completes
the computational hardware.

4.2 The Multiplier Block. The Multiplier
block provides specific hardware support for
several ADPCM functions & is shown in
Figure 2. Functions specified in
Recommendation G.726 [6] and executed by
the Multiplier block are listed below with

their hardware equivalents and a short
explanation, as necessary, of their operation:

4.2.1 FMULT: a 16-bit 2’s-complement
fixed-point operand (applied at the A-bus) is
multiplied by an 11-bit floating-point
operand (applied at the B-bus) and the 16-bit
2’s-complement fixed-point result returned
in the output register. The hardware is
designed to perform this function in 3 clock
cycles: during cycle 1, the fixed-point
operand on the A-bus is converted to
floating-point; in cycle 2, a floating-point
multiply is performed – the mantissas are
multiplied & the exponents are summed ; in
the final cycle, the result is converted back to
fixed-point and loaded into the output
register. This multiply, in conjunction with
the G.726 “ACCUM” function, produces a
single contribution to the signal estimate
output from the adaptive predictor. When
this 3 cycle instruction is used in parallel with
an addition instruction for the Adder, the 6
floating-point multiply-accumulates specified
in [6] are performed in just 20 clock cycles.

4.2.2 FLOATA & FLOATB: these
functions perform 15/16-bit signed
magnitude to floating-point conversions and
16-bit 2’s-complement conversions
respectively: both take 2 cycles to complete.

4.2.3 LOG & ANTILOG : these functions
perform 16-bit 2’s-complement fixed-point
to 11-bit base 2 logarithm conversion and
12-bit base 2 logarithm to 15-bit signed-
magnitude conversion respectively – since
their format is very similar to the 11-bit
floating-point format used in “FLOATA &
FLOATB”, these functions share the same
hardware and execute in 2 cycles.

Bartkowiak, Nix, and Asghar, AMD 1997

4.2.4 LEFT_SHIFT : this function
performs part of the G.726 “TRANS”
function and performs left-shifting in a
single cycle.

4.2.5 AMULT & IMULT: “ AMULT “ is
part of the “MIX” function and performs a
14-bit by 7-bit 2’s-complement multiply with
a 13-bit result. “IMULT” performs an 8-bit
by 16-bit multiply with a 19-bit result. Both
operate in a single cycle.

4.3 Limit & Quantization Block: This
block provides additional hardware support
for several ADPCM functions & is shown in
Figure 2. Functions specified in
Recommendation G.726 [6] and executed by
this block are listed below:

4.3.1 QUAN, RECONST, FUNCTF &
FUNCTW: The first of these functions,
“QUAN”, quantizes the difference signal to
the 4-bit ADPCM code; the next 3 functions
employ this 4-bit code as an input. Thus,
when “QUAN” is executed, the 4-bit code is
latched internally and subsequent calls to the
other functions use the retained information.
“QUAN” executes in 2 cycles and the others
in a single cycle.

4.3.2 XOR & GT: These functions
represent “exclusive-or” and “greater than”
required by G.726 and for general
computation.

4.4 Power Savings: all of the functions
listed above use only the minimum of
hardware to perform their designated task –
each block and its associated control logic
only draw current when enabled: for
example, for “IMULT”, the only block active

during execution are the A & B input
latches, the multiplier array and the output
register.

4.5 Parallel Operations: any multi-cycle
operation launched in the Multiplier block
can be performed in parallel with an
operation in the main DSP or the Limit &
Quantization block. For example, while the 3
cycle “FMULT” operation is proceeding, the
DSP can perform all of the operations
described in section 4.1 above; additionally,
another “FMULT” instruction can be
launched before the result from the previous
“FMULT” has completed; the “FMULT”
results can be accumulated in the main DSP
adder while subsequent “FMULT”
operations are proceeding.

5 Performance: Manufactured in 0.35
micron technology, it is designed to operate
at a nominal power supply of 3.0 volts.
When clocked at 9.216 MHz, the DSP core
plus the analog consume 18 mw. To perform
G.714 CODEC filtering, DTMF generation
and G.726 compliant ADPCM Transcoding
requires 7.4 MIPS, 456 28-bit program
memory (PROM) instruction words, 36 8-
bit words of coefficient memory
(CROM/CRAM) & 123 19-bit words of data
memory (DRAM). For ADPCM alone , the
figures are 4.2 MIPs, 262 PROM, 85 DRAM
& 13 CROM.

 US Patents 5282153, 5347480 and 5420815
covering the DSP architecture were awarded
to the authors.

Bartkowiak, Nix, and Asghar, AMD 1997

Figure 1: DSP Block Diagram

[1] NEC Electronics Inc., DSP & Speech
Processor Products Data Book 1989-90,
uPD7730/77C30 ADPCM Speech
encoder/decoder, 3-1.

[2] Texas Instruments, ADPCM Transcoder
CF70070 Data Sheet. 1989.

[3] M. El-Sharkaway, Real-Time Digital
Signal Processing Applications with
Motorola’sDSP56000 Family, Prentice Hall,
1990, Appendix E, 44.

Figure 2: Multiplier Block Diagram

[4] Texas Instruments, Digital Signal
Processing Applications, 1986.

[5] Advanced Micro Devices Inc., Dual
Subscriber Line Audio Processing Circuit
(DSLAC) Data Sheet, Am79C02(A), 1995.

[6] ITU-T Recommendation G.726 –
40,32,24,16 Kbits/s Adaptive Differential
Pulse Code Modulation (ADPCM), Study
Group XV – Report R 38, August 1990.

